
Unphysical singularities in semiclassical level density expansions for polygon billiards

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 3961

(http://iopscience.iop.org/0305-4470/16/17/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 16:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 3961-3970. Printed in Great Britain 

Unphysical singularities in semiclassical level density 
expansions for polygon billiards 
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Received 11 April 1983 

Abstract. It is pointed out that the semiclassical periodic orbit expansion for the level 
density of a bounded quantum system may contain singular structure not found in the 
exact level density. This is illustrated for a particular system, a pseudointegrable polygon 
billiard. We show that here the periodic orbit expansion has singular structure on all 
scales of energy, and takes on negative as well as positive values. However, when 
sufficiently smoothed the expansion bears a good resemblance to the exact smoothed level 
density. 

1. Introduction 

Recently there has been considerable interest in finding semiclassical approximations 
(i.e. in the limit that Planck’s constant, h, tends to zero) for the spectra of bounded 
conservative quantum systems (e.g. Berry 1983). Progress has centred on the density 
of states function d ( E ) .  If E l , .  . . , Ej, . . . are the eigenvalues of the quantum system, 
with degeneracies counted separately, then (Gutzwiller 1967) 

d ( E )  1 S(E -Ej) = -- 1 lim+ Im Tr 
1 

= -- I m [ d r G ( r , r ; E ) ,  
i E + O  E - H + i E  T 

where G is the outgoing Green function, 

In the theories developed by Gutzwiller (1971) and Balian and Bloch (1974) the 
approximation to d ( E )  takes the form of an infinite summation over all the classical 
periodic orbits p,  and their repetitions q. In integrable (Arnol’d 1974) and pseudoin- 
tegrable (Richens and Berry 1981, hereinafter called I) systems periodic orbits are 
nearly all families of similar orbits. In ergodic systems they are mostly isolated. If 
the Fth periodic orbit is a member of an ( I ,  - 1)-parameter family of similar periodic 
orbits then the semiclassical formula takes the general form (Berry 1983) 

Here .$,(E) is the action around the pth periodic orbit, A,, , (E)  is an h-independent 
amplitude factor, a ,  is a phase associated with the caustics around the Mth periodic 
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orbit, and z ( E )  is the average density of states, 

Such an approach gives only an implicit rule for the eigenvalues. That is, in order 
to find the semiclassical eigenvalues, the singularities of the periodic orbit expansion 
must be located. Therein lie some of the major practical difficulties of this method. 
In fact, it is not clear that (2) in general represents a meaningful semiclassical spectrum, 
i.e. if the singularities have approximately unit strength and occur at approximately 
the energies E, (although it is known that d ( E )  may be exactly written in the form 
(2) if Aq,+ depends on h (Balian and Bloch 1974)). 

In particular cases, however, (2) has been shown to be a valid approximation. For 
example, in integrable systems the periodic orbit expansion yields precisely the 
eigenvalues obtained by torus quantisation (Einstein 1917, Berry and Tabor 1976). 
In the anisotropic Kepler problem, which is classically ergodic, Gutzwiller (1982), 
using a largely analytical procedure, has calculated the periodic orbit expansion, and 
located the first semiclassical eigenvalues. His results are in close agreement with 
variational calculations. Further evidence for the validity of the periodic orbit 
expansion, when the underlying classical motion is ergodic, was provided by Berry 
(1981), who discusses in great detail the quantisation of Sinai’s billiard. In these 
examples, (2) appears to be. valid even for moderate values of h (i.e. not only in the 
limit h + 0) and it is hoped that this might be true in general. 

In this paper we discuss an example in which the singularities of the periodic orbit 
expansion do not agree, even approximately, with the exact eigenvalues of the system. 

Our example is a classically pseudointegrable polygon billiard system. In pseudo- 
integrable systems (I) the orbits in phase space lie on invariant N-dimensional surfaces 
which are topologically different from the N- torus. They are therefore not integrable 
in the sense of Liouville-Arnol’d (Arnol’d 1974). The chosen system admits a 
completely analytical treatment at the semiclassical level of quantum mechanics, and 
we find that the periodic orbit zxpansion has a highly non-physical structure, involving 
a dense set of singularities with various strengths, both positive and negative. On the 
other hand, we find numerically that the smoothed periodic orbit expansion (Balian 
and Bloch 1971) provides a good approximation to the exactly computed smoothed 
density of states. Finally, we conjecture that such non-physical structure is typical for 
the periodic orbit expansion in polygon billiards. 

2. Periodic orbit expansion for polygon billiards and the ‘delta-grass’ 

We shall now describe the particular form of the periodic orbit expansion for the 
density of states of an arbitrary polygon billiard (see also I). 

A polygon billiard is a flat polygonal enclosure in which a classical particle moves 
freely with specular reflections at the polygon boundary. If all the vertex angles of 
the polygon are rational multiples of T then such systems are nearly always pseudoin- 
tegrable (I). That is, in phase space, their orbits explore two-dimensional invariant 
surfaces which do not have the topology of the torus (exceptions are the square and 
the equilateral triangle). If any angle is irrational then the motion is conjectured to 
be ergodic (Hobson 1975). 
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Quantum mechanically we wish to find the eigenvalues of the time-independent 
Schrodinger equation, subject to a suitable boundary condition. We shall choose the 
Dirichlet conditions, i.e. the wavefunction is to vanish on the boundary. 

Now motion inside billiard systems depends only on the geometry of the billiards 
boundary, and not on the energy (except as a parameter determining the particle 
velocity). It is therefore convenient to use the scaled ‘energy’ variable (see also Balian 
and Bloch 1971) 

k 2  = 2pE/h2.  (4) 

( k 2 + V : ) G ( r ,  r ’ ;  k 2 )  = t 3 ( r - r f )  ( 5 )  

d ( k 2 )  = -(1/47r) Im dr G ( r ,  r ;  k 2 ) .  (6) 

The k 2  Green function satisfies 

and the density of states is given by (cf ( 1 ) )  

I 
The semiclassical limit is now the limit k + 00 (rather than h+O). 

the polygon is equal to the free space case, which in two dimensions is 
Now when the source and field points r ’ ,  r are very close the Green function for 

r-r ’  
G ( r ,  r ’ ;  k 2 )  = -*!) (klr -r’I), (7) 

where Hi” is the Hankel function of the first kind of zero order (Abramowitz and 
Stegun 1964). However, there are also contributions to G due to reflections at the 
boundary of the polygon billiard. Semiclassically we can regard the source r’ as a 
‘lighthouse’ which illuminates the field point r both directly and via reflections. The 
semiclassical Green function therefore has contributions, of the form of (7), from all 
the classical trajectories from r’ to r inside the polygon billiard, i.e. 

G ( r ,  r ’ ;  k 2 )  = -fi 1 (-1)”jHk” ( M j ( r ,  r ’ ) )  (8) 

where j labels the classical trajectories from r’ to r,  Tj is the total length of the jth 
such trajectory, and vi the number of reflections. The factor ( - 1 ) ” ~  ensures that G 
vanishes on the boundary. 

i 

The semiclassical density of states function is, using ( l ) ,  

d ( k 2 ) = R e 1  I d r  ( - l )” jHf) (k2? , (r , r ) ) .  
4 7  j 

(9) 

The closed orbits are of three types. Firstly, there are the direct orbits with zero 
length, i.e. for which Z’j(r, r )  = 0.  These give the average density of states (Baltes and 
Hilf 1978) 

6 ( k 2 )  = A / 4 r  (10) 
where A is the area enclosed by the polygon. Secondly there are the non-periodic 
(self-intersecting) orbits. For such orbits Tj varies with r and neighbouring contribu- 
tions to the integrals in (9) cancel due to destructive interference between the rapid 
oscillations of the Hankel function in the semiclassical limit, so that these paths do 
not contribute to d ( k 2 ) .  Thirdly, there are the closed orbits which are also closed in 
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momentum, i.e. the periodic orbits. These give rise to the dominant oscillatory 
contributions to d ( k  '). In pseudointegrable systems, as in integrable systems, the 
periodic orbits are not isolated but form continuous families on the invariant surfaces 
in phase space. Each orbit in the family has the same value of Sj, so that the integrand 
in (9) is independent of r. For integrable systems each family of periodic orbits fills 
its invariant surface (a torus). But in pseudointegrable systems the family typically 
fills a band only partially covering the surface. In the coordinate space this band may 
self-intersect. That is, a given periodic orbit may pass through a particular point r 
several times, with different directions, before repeating itself, thus dividing the 
periodic orbit into a number of legs. The contribution to the integral in (9) is correctly 
taken into account by including each such leg of the periodic orbit separately so that 
the family contributes a factor dj equal to the area occupied by the band of periodic 
orbits on the invariant phase space surface. Finally, the number of reflections vi along 
a periodic orbit family in a polygon billiard is always even (I), so that 

where p labels the primitive periodic orbit and 4 includes repetitions. The more 
familiar form of the periodic orbit expansion ( 2 )  is regained by taking the asymptotic 
form of the Hankel functions in ( l l ) ,  but for our purposes here it will be more 
convenient to use ( 1  1). 

The formula (11)  is the first-order semiclassical expression for d ( k 2 )  valid for an 
arbitrary polygon billiard. For the purpose of classifying the periodic orbit families 
involved in (1  1 )  it is convenient to introduce the periodic orbit spectrum, defined by 

Then 

No general method for calculating n(9) for polygon billiards is yet known. 
However, n (3) is known for some special cases. One of these is the truncated triangle 
billiard of figure l ( a )  composed of three right-angled triangles. The invariant surfaces 
in phase space (figure l ( b ) )  have the topology of the two-handled sphere (I). 

Figure 1. (a) The truncated triangle billiard and ( b )  the invariant phase space surface. 
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Table 1. The lowest 36 eigenvalues of the billiard of figure l (n) .  The numbers shown 
are the ‘scaled’ eigenvalues k 2 / p 2 ,  which were computed accurate to the nearest integer 
(in I). The few exactly known eigenvalues of equation (14) are marked by an asterisk. 

~~ 

25 48 73 80* 106 116 150 158 160* 
187 208* 211 245 263 267 272* 298 320* 
326 338* 362 387 400* 410 416* 438 455 
464* 476 497 508 544* 545 561 584 592* 

In (I) the first 36 eigenvalues of this billiard were numerically computed (table 1). 
In fact, some of these eigenvalues may be obtained exactly by a generalisation of the 
‘torus’ eigenvalue condition (I); these are 

k $ ,  = 167r2(m2+n2),  where m > n > 0.  (14) 

However, the number of these eigenvalues with ‘energy’ less than k 2 ,  divided by k 2 ,  
is only 1/128x, where as the average density according to the area rule (10) is 3/1287r. 
It is not currently known how to find the missing eigenvalues analytically. 

The periodic orbit spectrum for the truncated triangle billiard is exactly (Henyey 
and Pomphrey 1982, Richens 1982) 

n ( 2 )  = 1 ( 1‘“’ %3,S(Y-;qp)+ c‘”’ [ ia,S(2-qp)+a.B,S(~-i4p)]) (15) 

where p is a coprime vector (i.e. the integers p = (pl, p2)  have no common integer 
factor) and 

W 

q = l  &,*pzao f i 1 = l r 2 = 0  

93, = O  i f p 1 = p 2 = 0 ,  
1 

- 2  if p = p2 or p2 = 0, - -  

= 1  otherwise. 

The notation (E) on the p summation means that pl + p z  is even and the notation 
(0) means that ~1 +p2 is odd. It is because this restriction is on the coprime vectors 
p rather than on the lattice vectors p = qp that this expression is non-trivial. 

Hence from (13) and (15) the periodic orbit expansion for the density of states is 

The constant term is the average density d(k2), (10). To the author’s knowledge this 
is the first time such an explicit formula for the semiclassical density of states function 
for a non-integrable system has been written down (but see also Gutzwiller 1982). 

Before analysing this expression for d ( k 2 )  we shall compare it numerically with 
the exact density of states (table 1). We compute the smoothed densities (Balian and 
Bloch 1971); that is, the ‘energy’ k 2  is given a small positive imaginary part S. Then 
the exact density (1) becomes a sum of Lorentzian resonances, 



3966 P J Richens 

and each term in the periodic orbit summation acquires an exponential ‘damping’ 
factor exp(-SqYjI2k). This comparison is shown in figure 2 for S = 7 . 5 r 2 .  This 
agreement is clearly quite good. However, when S is reduced to 7 ~ ‘  the semiclassical 
curve begins to develop a striking structure of ‘spikes’, of both positive and negative 
values (figure 3), which does not correspond to any structure found in the exact density 
of states (1). In fact, we shall see shortly that if S is further reduced this structure 
becomes more and more complicated. 

0 100 200 3” LOO 500 600 
k’ln’ 

Figure 2. Smoothed semiclassical expansion of the density of states for the truncated 
triangle when 6 = 7 . 5 ~ ’  (full curve), compared with the exact smoothed density of states 
(broken curve). 

k’ln‘ 

Figure 3. ‘Delta-grass’: the semiclassical expansion for the density of states of the truncated 
triangle when 6 = w 2 .  

We shall investigate the structure of (16) analytically by rewriting it as a summation 
involving S-functions (cf (1)). The standard way of achieving this is by using the 
Poisson transformation technique. This re-expresses a lattice summation (i.e. one not 
restricted by a condition such as (E) or (0) above) as a summation over the dual 
lattice. To this end, (16) must be rewritten in a way that does not involve the restrictions 
(E) and (0) on the primitive lattice vectors p.  

To this end, we note that every lattice vector p whose primitive vector p satisfies 
the condition (E) (excepting the zero vector) is found uniquely amongst the vectors 

(18) 

where g = 0, 1, 2, 3,. . . and vl, v 2  are integers. This is because p1 + p 2  is even if and 
only if the prime decompositions of p1 and pz contain the same power of 2. Because 
of the factor 2‘ in (18) the array of such vectors has a scaling or hierarchical structure 
(figure 4). 

p = 2“2v1+ 1,2vz+ 11, 
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. . . . . . .  . . . . . . . . . . . . .  

Using this result we may rewrite any lattice sum restricted by the condition that 
p 1 + p 2 i s e v e n a s  

. . . . .  .lo . . . .  .20. . .  

where f k )  is any smooth function. This formula may be used to rewrite (16) in terms 
of unrestricted lattice summations of the form 

The Poisson transformation of this unrestricted lattice summation yields the exact 
result, 

The left-hand side is the density of states function for a 7/4 right triangular billiard, 
and the right-hand side its expansion over periodic orbits, which in this case is exact. 

Putting together (16), (19) and (21) we find, after some rearrangement, the 
following curious semiclassical expression for the density of states of our polygon 
billiard: 

d ( k  2 ,  = C 93M [ S  ( k  - 1 6 r 2 M 2 )  + S (k - 8,rr2M2)] 
M ,  L M 2  

+ " 1  7 - &B~&[8(k2--""')-ZS(k'--)]  47'M2 
g = O  4 M I -  =-M*=-O 9 x 4 g  9 x 4 g  

+ $ [ S ( k 2  - 4 ~ ' M ~ / 4 ~ )  -2S(k ' -  8 ~ ~ M ~ / 4 ~ ) ] ) .  ( 2 2 )  
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This is exuctfy equal to the periodic orbit summation (16). The first two M-summations 
have an average density of 3 / 1 2 8 ~ ,  which is the correct average density for this 
billiard. The first of these two terms are the exact eigenvalues of equation (14). The 
second of these two terms together with the g-summation are the first-order semi- 
classical expression for the remaining eigenvalues (for which exact analytical results 
are not known). The g-summation has an average value of zero. The S-functions in 
the g-summation are spread densely over the k-plane, and take both positive and 
negative values. For obvious reasons we have called the expression (22) a delta-grass. 
Clearly it bears no obvious relationship to the exact formula, (1); we shall discuss 
this further in D 3. 

It is instructive to rewrite (22) using the function 

A(L; k )  = ( 8 r / L 2 )  C B&(k2  -.rr2Rri2/L'). 
M , + M 2 + 0  

This is proportional to the density of states of the 1r/4 right triangle in which the 
short sides have length L. A is normalised to have an average density of unity. In 
terms of this function (22) becomes 

1 1 

1281r 641r 
d ( k 2 ) = - A ( i ;  k )+-- -A 

+- 3 f [A(=; k )  -A(-$; k )  +A(:; k )  - A ( 7 ;  3 x 2 '  k ) ] .  
1281r,=o 2J2 

This is an infinite expansion for the density of states in the truncated triangle involving 
the density of states functions of larger and larger 7r/4 right triangle billiards. The 
geometrical relationship between these billiards is shown in figure 5 .  

3. Discussion 

We have just seen that the semiclassical periodic orbit expansion for the density of 
states of the 'truncated triangle' billiard of figure 1 has a complicated 'S-grass' structure, 
which bears no obvious relationship to the exact density of states (1). However, when 
k 2  has a small positive imaginary part, so that these &functions become broadened 
into Lorentzian resonances, much of this structure is smoothed away and it is for this 
reason that the smoothed exact and smoothed semiclassical densities of states functions 
are in good agreement (figure 2). 

We have found that the semiclassical density of states has an interpretation as an 
infinite sum over the density of states functions of larger and larger 1r/4 right triangular 
billiards (24). Now the functions A(L; k ) ,  (23), obey the scaling law 

( 2 5 )  A(L; k )  = A(AL; k / A ) ,  

which means that the terms Sg in the g-summation (24) obey the scaling law 

Sg(k)  = Sg+n(k/2"). (26) 

This suggests the possibility that the expansion (24) might be obtainable using a 
renormalisation theory, in a way not yet known. 
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Now the eigenvalues of the 7r/4 right triangular billiard are highly degenerate; in 
fact the levels have an average degeneracy proportional to 6 (Berry 1981). Hence 
the ‘S-grass’ will be ‘thinned out’ at this rate as k -P W. However, because of the 
scaling law (26) there will always remain unphysical structure in the periodic orbit 
expansion, even as k+w. In fact, it appears that the ‘S-grass’ may only be removed 
by a more exact treatment of the density of states function. 

A careful analysis of the Green function inside polygon billiards shows that apart 
from the contributions associated with the classical bands of orbits (1 l), there are also 
contributions associated with orbits scattered at the vertices of the polygon (Richens 
1982, Balian and Bloch 1971). Semiclassically, there is a contribution for each 
scattering roure consisting of straight line paths linking successive vertices of the 
polygon (and possibly including specular reflections at the polygon edges). The contri- 
bution from each periodic scattering route to the semiclassical density of states function 
is of order l/k‘”’2’/2, where v is the number of vertex scatterings along the route 
(Richens 1982). That is, each vertex reduces the asymptotic order by l/k”’. The 
number of such contributions increases exponentially with their length. There is thus 
a delicate balance between this proliferation of routes and their increasingly smaller 
asymptotic values, in determining their overall contribution to d (k’). A treatment 
which takes exuct account of these contributions will, of course, lead to an exact 
representation of the density of states function, and thus resolve the difficulties 
associated with the periodic orbit expansion. This remains a difficult problem for the 
future. 

It is interesting to speculate on whether the ‘S-grass’ structure of the periodic orbit 
expansion for this particular polygon billiard system is a typical property for general 
polygon billiards. This seems likely (at least for finite values of k )  for the following 
reason. In the ‘space of all conceivable polygons’ there is a dense set (of zero measure) 
of polygons for which the periodic orbit vectors lie on a regular lattice, restricted by 
a condition on the primitive lattice vectors (as in our example, i.e. figure 4). For these 
polygons an analysis similar in principle to the one carried out in 8 2 will lead directly 
to a ‘S-grass’ formula analogous to (22). Any other polygon may be approximated 
arbitrarily closely by one of these special cases, so that, at least for finite k, the ‘S-grass’ 
will persist. We therefore conjecture that the ‘S-grass’ is a generic feature of the 
periodic orbit expansion for the density of states in polygon billiard systems. Of course, 
such curious behaviour is not expected to be typical of periodic orbit expansion in 
general, but is here due to the singular nature of the classical flow at the vertices of 
the polygon billiards. 
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